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In this paper we continue our development of the methods of Vaughan & Wooley,
these being based on the use of exponential sums over integers having only small
prime divisors. On this occasion we concentrate on improvements in the estimation
of the contribution of the major arcs arising in the efficient differencing process. By
considering the underlying diophantine equation, we are able to replace certain
smooth Weyl sums by classical Weyl sums, and thus we are able to utilize a number
of pruning processes to facilitate our analysis. These methods lead to improvements
in Waring’s problem for larger k. In this instance we prove that G(8) < 42, which is
to say that all sufficiently large natural numbers are the sum of at most 42 eighth
powers of integers. This improves on the earlier bound G(8) < 43.
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1. Introduction

As usual we define G(k) to be the least number s such that every sufficiently large
natural number is the sum of, at most, s kth powers of natural numbers. In this paper
we continue our development of the methods of Vaughan & Wooley (1993), which
hereinafter we abbreviate to FIWP. Generally, following Vaughan (1989), our
methods are dependent on upper bounds for the number, S (P, R), of solutions of
the diophantine equations

bt =yt 4 yE, (1.1)
with z;,y,€ % (P, R), where throughout we write
A (P,R) ={1 <n < P:pprime, p|nimplies p < R}.

In FIWP we are preoccupied with refinements of the efficient differencing process
initiated in Wooley (1992). When k = 8 the methods fail to give bounds for S{ (P, P7)
suitable for the establishment of the theorem below, by a power of P. The source
of this failure is the inherent difficulty of estimating the contribution from the major
arcs arising in the efficient differencing process.

We are able to make further progress by applying a pruning process, based on the
exploitation of the well-understood behaviour of classical Weyl sums on suitable
‘major arcs’. To ascend to a position from which such exploitation is possible, we
make the crucial observation that at a certain point in the efficient differencing
process, two smooth Weyl sums may be replaced by classical Weyl sums with no
significant loss. Thus, in §3, we develop effective treatments for the various mean
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386 R. C. Vaughan and T. D. Wooley

values which arise in the pruning processes. For larger k, these methods prove to be
of importance in applying the methods of FIWP to the task of obtaining an upper
bound for G(k), although in general, further ideas are required to obtain the strongest
results deriving from this circle of ideas. We therefore confine ourselves here to the
case k = 8. In FIWP it is shown that G(8) < 43. We are now able to establish the
following theorem.

Theorem. G(8) < 42.

Since the methods of this paper are closely related to those of FIWP (see also
Vaughan, this volume), we shall find it convenient to use the notation introduced
there.

2. Preliminary observations

We first recall some of the notation of FIWP. Throughout, £ will denote an
arbitrary integer exceeding 2, s will denote a positive integer, and ¢ and # will denote
sufficiently small positive numbers. We take P to be a large positive real number
depending at most on k, s, € and 9. We use € and > to denote Vinogradov’s well-
known notation, implicit constants depending at most on £, s, € and . We make
frequent use of vector notation for brevity. For example, (c,, ..., ¢,) is abbreviated to
¢. Also, we shall write e(a) for ™%, and [x] for the greatest integer not exceeding x.

In an effort to simplify our analysis, we adopt the following convention concerning
the numbers ¢ and R. Whenever ¢ or R appear in a statement, either implicitly or
explicitly, we assert that for each ¢ > 0, there exists a positive number #,(e, s, k) such
that the statement holds whenever R = P7, with 0 <% < (e, s, k). Note that the
‘value’ of ¢, and #,, may change from statement to statement, and hence also the
dependency of implicit constants on € and #. Since our iterative methods will involve
only a finite number of statements (depending at most on £k, s and ¢), there is no
danger of losing control of implicit constants through the successive changes implicit
in our arguments. Finally, we use the symbol & to indicate that constants and
powers of I and P* are to be ignored.

For each se N we take ¢, = ¢, ; (1 = 1,...,k) to be real numbers, with 0 < ¢; <
1/k, to be chosen later. We then take

P =2P, M;=P% H,=PM?"* @ =PWM,.. . M)" (1<j<k).
. i - j
We also write H;=11H;, and M;=1IM;R.
=1 =1
We define the modified forward difference operator, Af, by
A¥(f@);hym) = m™*(f (2 +hm")— [ (x)),
and define A¥ recursively by
A}“H(f(x);h, v Py my, o my )
= A;"(A;"(f(x);hl, v hpmy, my) sy my).

We also adopt the convention that A¥(f(x);k;m) = f(x).
For 0 <j<klet

Y=Yz hy, oo hysmy, o omy) = AF(f(2); 2Ry, ..., 2k my, ... my),
where f(2) = (2—hy m§ — ... —h;mF)E.

Phil. Trans. R. Soc. Lond. A (1993)
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Further improvements in Waring’s problem. 111 387
Write filay= X elar®) and gjla)= X e(azk).
ze(Q;, R) 1<2<Qy
Also, write Fo)= Z e(a¥(z;h;m)),
2,h,m

where the summation is over z, A, m with
1<z<P, M;<m<MR, mes/(P,R), 1<h<27H, (1<i<}).

We define S (P, R) as in the introduction, and, when no confusion is possible, we
shall suppress the superscript k. Suppose that the real numbers A, (1 < s < 00) have
the property that

S®(P, R) < PAste, (2.1)
Such numbers certainly exist, since we may trivially take A, = 2s. Then, for each s,
we define the quantity A; by

A, = 25— k+A, (2.2)

At the core of our argument is the use of a modified version of Lemma 2.2 of FIWP,
which we now record.

Lemma 2.1. Whenever 0 <t <sand 1 <j<k—1, we have

1
J IF) (@) (@) dox <€ P(Qok (L 0T, 7541 T ),
0

1
where Ty, = PH M, Q;i"f“*‘J 11 (0t) 9141(2)? fra (@) 7272  dar. (2.3)
0

Proof. The proof is almost identical to that of Lemma 2.2 of FIWP. We observe
that in eqn (3.5) of Wooley (1992), an upper bound for the quantity U, appearing in
the proof of Lemma 3.1 of that paper is obtained by relaxing the restriction on x; and
Y1, 8o that only 1 <z, y; < ;. The lemma then follows as before, on considering
the underlying diophantine equations.

Our argument will be based on a Hardy-Littlewood dissection, together with a
suitable pruning operation. We now describe the various sets of arcs which we shall
make use of. Here and throughout, we write w = 277,

Definition 2.2. Suppose that 1 <j < k—4.
(i) Let m; denote the set of points in [0, 1] with the property that whenever there are
acZ and g€ N with (a,q) = 1, and
qP'QF R D |a—a/q] < 1, (2.4)

then q > P. Further, let M; = [0, 1]\m,.

(ii) When (q,a) = 1, let M;(q, a) be the set of a in [0, 1] for which (2.4) holds.

(iii) Let n; denote the set of points in M, with the property that whenever there are
a€Z and g€ N with (a,q) = 1, and

q(PM,)™* P Qf la—a/ql <1, (2.5)

then q > (PM,)**~D. Further, let ; = M\n,.

(iv) When (g,a) = 1, let M;(q, a) be the set of a in M; for which (2.5) holds.

We note that the 9M;(g,a) with 0 < a < ¢ <P are disjoint, and also that the
N,(g, @) with 0 < a < g < (PM,)** are disjoint.
Phil. Trans. R. Soc. Lond. A (1993)
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388 R. C. Vaughan and T. D. Wooley

Finally, we shall record the definitions of some generating functions of use on the
various major arcs. We write

S@a)= X elwt/g), and vf= T TV le(fn)
r=1 1<2<Qf

and Vi(ee;q,a) = ¢7'S(q, a) v(a—a/q).

We then define g} () to be zero whenever aeny, and by gf(x) = Vj(a; ¢, a) whenever
ae(g,a) and 0 < a < g < (PM,)** 9. Also, we write

r¥16(q (hm))'

We then define Ff(«) to be zero whenever aem;, and by

7;(q,a, h,m) =

Pqir,(q,a,h,m)
* ] 1,
File) = %% (L+le—a/qlhy ... h; PEI)E=D"

whenever aeM;(g,a) and 0 < a < g < P.

3. A refined Hardy-Littlewood dissection for larger &

We now describe the various pruning operations which underpin our argument,
beginning with a lemma which reduces the problem of estimating the integral in (2.3)
to one of estimating the mean value I;,, ,, , , which we define by

Ij’“=J a) g (o) fi(ee)?*| dex.

Ry

Lemma 3.1. Suppose that 1 < j < k—4. Let u be a positive integer, and define

t= [(k—J—ijl)u+1], 0= t—(k_JjL.l)u,
k—j k—j

-
and v, =E—73{‘i(‘%‘“1+(1_0) A,).
1
Then J Fj(0c) ()2 f() | dex < PY*[, M, Q3“+*~% .l +1, ,
0
where M = (PM,)™ Qburi4 (PM,)*=w Qru=2,

Proof. In view of Definition 2.2, we may imitate the analysis of the proof of
Lemma 13.1 of FIWP to deduce that

[ B g0t o 1y 1, (3.1)
0
where I, = J F¥(a)lg;(a)? f(a)?] da, (3.2)
My
and I, = (P("_"‘l)/("‘j)“ﬁjﬂj +sup IFj(oc)|> Jl lg;(c0)® f(0)?*| dex. (3.3)
aem; 0

Phil. Trans. R. Soc. Lond. A (1993)
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Further improvements in Waring’s problem. 111 389

We first consider /,. By using a Weyl differencing argument, we may follow the
pattern established in Lemmata 6.1 and 12.1 of FIWP to deduce, from Lemma 4.1
and Corollary 4.2.1 of that paper, that

sup [Fy(a)| < PV, M,(PM,)™. (3.4)

aem;
Further, when k—j > 4 we have

269 (k—j) = 2> 1+ ¢,
and hence PU—IDIG=D ] 1, < PH, M,(PM,)™". (3.5)
Also, on noting the observation at the end of §3 of Wooley (1992),

1
[ @ sz < gpea (3.6)
0
Thus, in view of (2.2), we obtain from (3.4)—(3.6) the estimate
I, < P[], Q3> 5 (PM )™ Qbu. (3.7)

We now prune the arcs I, occurring in I, down to the arcs it;. When aen; N M;(q, a),
by Definition 2.2 (iii) we have

q+Q¥lgx—al > (PM,)»*D.
Hence by Lemmata 4.7 and 4.8 of FIWP,
sup  F}a) K ZXP(q+P*7h, ... bilge—al) &P
m h

aen; nMy(g, @)
< PH, M (g + Q¥ |go—al) ™/ *
< PH]-M].(PMI)“W.
Thus as above we deduce from (3.2) that
I, < Iy+ PVl M Q3+ F (PM) ™ Qfun, (3.8)

where j ) |g;(a)? fi(oe)| dex.
%y

By Vaughan (1981a, Theorem 2), when ae (¢, a) we have
g;(c) — g (@) < (g +QF lgou—al)tte < (PM,)E=te,

Thus Iy < gk | ) lgt o0 et de, 39)
Ry

where J = J o) | fi(e)|** da.
Ry

But by Hélder’s inequality,
JEIH1 g [ K00 K k=D 1-6)

1
where K, = J If(@)de < @fste (s =t—1,1), (3.10)
0

1
and L, =f F¥(a)* 1 de. (3.11)
0

Phil. Trans. R. Soc. Lond. A (1993)
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390 R. C. Vaughan and T. D. Wooley
But on applying Lemma 4.10 of FIWP, we obtain
L, < P{PH, M, 5%, (3.12)

and hence we deduce that o
Jy < PYYH, M, Q34 (3.13)

The lemma now follows on combining (3.7)—(3.9) and (3.13).

There are a number of approaches to the task of estimating the integral I,
appearing in the statement of Lemma 3.1, the effectiveness of the respective methods
depending on the relative sizes of @; and (PM,)**~?. Although we shall require only
a relatively simple approach in our applications, we explain two ideas, so as to
increase the flexibility of our methods. The first idea is simply to apply Holder’s
inequality.

Lemma 3.2. Suppose that 1 < j < k—4. Let u be a positive integer, and define

= 1 2 — [yl =l
y=1 h—j+1 1’ t=[yut+1], O=t—y'u,
and pu=Y(OA,_ +(1=0)A,).
Then Ij,u < Pl+eﬁij Q]gu+2—k+pu’

Proof. By Hoélder’s inequality,
I, , < Ly/®=9+0 L2+ Ky0, Kya-0), (3.14)
where K, (s =¢—1,t) and L, are given by (3.10) and (3.11), and

L,= J lg (@) dar. (3.15)
R,

The methods of Vaughan (19816, section 4.4) yield L, < @;**. Thus by (3.12) and
(3.14), we obtain o
I o < PV T, QFH(QM1Fyr0 (QieHeyrao),

and the lemma now follows in view of (2.2).

Our second idea is to use the refined major arc estimates for f;(a) developed in
Vaughan & Wooley (1991, §7). Although useful in more restricted circumstances
than the estimate of Lemma 3.2, when they apply, the ensuing estimates are
stronger. We define f*(«) to be zero whenever a ¢ N;, and by

fif (@) = Qg+ Q) lag—al)/** (3.16)
whenever aeM;(g,a) and 0 < a < g < (PM,)%*D,
Lemma 3.3. Suppose that 1 <j < k—4. Let u be a positive integer, and define

1 2 , ;
(e e A A e RS Ot

and o, =y(O0A_+(1-0)A)—1
Suppose also that w = 2yk, and (PM,)** < Q3 Then

j u < Plﬂ]{jiwj Q]gu+2~»k(([)Ml)w(Ic ))/SQ;.ruh}“]_)”
Phil. Trans. R. Soc. Lond. A (1993)
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Proof. Let
M= Q%( PM, >/,

so that on hypothesis we have M > (PM;)**~. Suppose that a € R;. Then by Definition
2.2, there exist a€ Z and qge N with (a,q) = 1, ¢ < (PM,)**™ and such that (2.5)
holds. Thus by Vaughan & Wooley (1991, Lemma 7.2),

f@) < PSP @)+ QUPIL ),
where f*(a) is defined by (3.16). Consequently

I, . < PAT,+T), (3.17)
where T, = J F¥(a) f* () lgF (o) () * | dex (3.18)
%
and 1, = Qe [ B gt e e
?

By Holder’s inequality,
T, < Qi(PM,)»®~D/8 [ e=i+1) [2/G+1) gyo [y(1-0)
j — bl

where K, (s =t—1,t) and L,, L, are given by (3.10), (3.11) and (3.15). Then as in the
proof of the previous lemma, we obtain

T, < P1+eﬁij Q?uﬂ_k"'”“(PMl)ww_j)/s. (3.19)

Thus if 7} is the dominating contribution to the right-hand side of (3.17), then we are
done.
Suppose then that I; , < P°T}. Applying Holder’s inequality to (3.18), we obtain

Tl < Té/ZuI];,—ul/zu’

where T, = j () fi¥ () |g;(a)?| dex.
0y

7

Then I, , < PTy* IV,

and hence I; , < P°T;. A further application of Holder’s inequality now yields
T, < LYG=3+1) [2/06+0) [y

where L, and L, are given by (3.11) and (3.15), and

L, = f (@) da
%

vy zj (¢+ Q¥ log—al)/7* da.
Ni(q, a)

a<(PM)F D o 0<asq

Then provided that u > 2yk, we may deduce that L, < P°Q?*/»"*, and thus, as in the
proof of the previous lemma,
Ij, . < PHeﬁij Q]gu+2—/c.
This completes the proof of the lemma.
Phil. Trans. R. Soc. Lond. A (1993)
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4. The iterative procedure for higher powers

We start by briefly exploring some of the consequences of the treatment of the
previous section. Our aim is to show that

f By (@) g;(00)2 f;(@)?| dox < PY*eH M, Q3 +27*((PM,) ™ Qv+ 1), (4.1)

which is to say that the integral in (4.1) is bounded above by the minor arc
contribution together with the ‘expected’ major arc contribution. To provide a
reasonably concise discussion, we list the following conditions. Here, and throughout
§84 and 5, v,, p, and o, are defined as in the statements of Lemmata 3.1, 3.2 and 3.3.

(k_j‘l‘l 1+¢1 2+Au+1 Vay (1"¢1_---_¢j)’ (A)
(k=i w(l+¢,) < (2—v, —¢1—...—¢‘, (B)
w=2yk and w(k—j 1+¢1 —i—..— ), (©)
Ay —=pu) (1= —...— ;) : w1+¢1 (o)
(Api1— o) ( —¢1 o= @y) = (wtgwk—7) (1+¢y), B)
Py =0, (v)
sw(k—j) (1+¢y)+o,(1—¢—...—¢;) <0 ©)
We now record a convenient consequence of Lemmata 3.1, 3.2 and 3.3.
Lemma 4.1.
(I) Suppose that A, (1—¢,—...—¢;) > w(l+¢,) and condition (A) holds, and
either condition (o) holds, or else both conditions (C) and (B) hold. Then
f |Bj(@) g;(o0)® fi(@)®] dow < Pl 0, Q5> (PM, )™ Qv
0
(IT) Suppose that A, ;(1—¢,—...—¢;) S w(1+¢,) and condition (B) holds, and

either condition (y) holds, or else both conditions (C) and (8) hold. Then
1
f |I’;(0(.) g;(oc)zf;(cx)zul doa < Pl+€ﬁjﬂj Q]gu+2—k'
0

Proof. The lemma follows in each case by simply interpreting Lemmata 3.1, 3.2
and 3.3.

The following corollary has the convenience of making no explicit reference to the

b
Corollary. Suppose that

Au+1_pu = w(k+ 1)/(1‘:_.7), (4:2)
and 24 Ay — vy = wk+1) (k—j+1)/(k—}). (4.3)
1
Then [[ 1B w011 < P T @ P Qv
0

Phil. Trans. R. Soc. Lond. A (1993)
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Proof. First observe that since p,, isnon-negative, and that 0 < ¢; < 1/k (1 <),
then condition (4.2) implies that

w(lc+1)> w(l+¢,)

k—j T 1—¢—...— ¢,
Thus we are in part (I) of Lemma 4.1, and furthermore condition (o) is satisfied. Next
we note that in like manner condition (4.3) implies that

1+,
1_¢1_"‘_¢j’
and hence condition (A) is satisfied. The corollary therefore follows from Lemma 4.1

@-

We now turn our attention to the main task of developing the iterative procedures
for higher powers based on a Hardy-Littlewood dissection. Following the notation
of FIWP, our iterative procedures will be based on schemes of the following form.

Fg 25— 2'_>Ff28— __>F2f228 2__> #)Ffzs 2:> 1;}) (ijs—2)
v v

f2s—2 25—2
1 Jj-1

Au+1 = Au+l_pu =

2"‘Au+l_vu = w(k_j+1)

Suppose that the conditions of Lemma 4.1 (I) hold with u = s—2. Then A, and ¢
are determined by the equations

PH,_ M, @) ~ PH, M, Q) (PM,)™, (4.4)
PH,_ J1,Q)— ~ (P(H,M,)* ME72 Qz Q)F (1 < i < j), (4.5)
Prs  PM2572 Qs (4.6)

Write A = A,_, and a = (k—A)/2k. Then following through the analysis of §13 of
FIWP, we find that

1 1-w 1 ; w
= — -1 2 i1
2 (lc+A+< k k+A)°‘ )/(”k“ ) (4.7)
and that the remaining ¢, are given by
$; = (1—w(1+¢,))/k, (4.8)
1 i .
and b, = A (ng] k+A)aH (1<e<y). (4.9)

Further, the limiting exponent A¥ is given by
AF =2 (1—¢y)+1+(25—2) ¢, (4.10)

Meanwhile, if the conditions of Lemma 4.1 (II) hold, then A, and ¢ are determined
by the equations (4.5), (4.6) and

PH,_ M, @) ~ PH, M, Q3> (4.11)
Equations (4.5) and (4.11) lead to the equations
k¢j - I_A(]. _¢1_... _¢]),
oy, = 1+ (k=) $,y (1 <i <)),
Phil. Trans. R. Soc. Lond. A (1993)
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Define a;, b; and ¢; (1 <1 <j) by

a;=1—A, b;=A, c¢;=k—A, (
and a;=1+(k—A)a;, cih, (4.13
(
(

b (k A) i+1 z+1>

Ci = Zk (k A) i+1 z+1
Then we deduce that

¢ = i@+ bi(Pr .. +¢iy)) (1 <i<y), (4.16)
and ¢, =a,/c,. (4.17)
We then find that A¥ is again determined by (4.10).

5. The treatment for eighth powers

Henceforth we put k = 8. We divide into cases according to the value of s. Our
analysis will be made a little simpler by noting that A, may be taken to be zero when
s is sufficiently large.

Lemma 5.1. We may take A, = 25—8 when s = 22.

Proof. By reference to the appendix of FIWP, when k=8 we have A} <
24.1954446 and Af; < 28.0945483. Let m denote the set of real numbers o with the
property that whenever a€ Z, ge N, (a,q) = 1 and |ga —a| < P77, then one has ¢ > P.
Further, define

flay= X  e(ax’) and gla)= X e(axF).

xeAd (P, R) 1<z<P

Then by the argument of the proof of Vaughan (1989, Theorem 1.8), we have
sup | f(e)] < P77,

aem

o= (1—A,)/64 > 0.0125711.

We now consider the mean value

INCECEE®

when s > 22, which, on considering the underlying diophantine equation, plalnly
provides an upper bound for S,(P, R). The contribution from the minor arcs m is at
most

where on recalling (2.2),

suplf 2s 36J |g 2f 34|doc < P(2s=36) (1— o) PMate.

aem

A little calculation reveals that (2s—36) (1 —o)+Af, < 2s—8 whenever s > 22, and
hence the minor arc contribution is acceptable. Meanwhile, the major arc
contribution can be estimated satisfactorily via a standard pruning argument, owing
to the presence of the classical Weyl sums g(a). We may therefore conclude that

1
f l9(@) (o) dar € P,
0

and the lemma follows.
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We now consider successively the values of s in the range 15 < s < 19.

(@) s=15
We use the Corollary to Lemma 4.1 with j = 4 and » = 13. First note that by
Lemma 5.1, we have
Prs = 13(Bgp+ Agy) = 0.

Next, by reference to the Appendix of FIWP, when k =8 we may take A, =
20.3659701. Consequently
Ay, =0.3659701 > 0.28125 = w(k+1)/(k—j).
Then (4.2) holds. Also,
24A,—v3=>2>1.40625 = wk+1) (k—j+1)/(k—7),
and so (4.3) holds. Then by the Corollary to Lemma 4.1, it follows that A% is

15
given by (4.10) with ¢, given by (4.7). Thus we obtain ¢, < 0.11822800 and
Af < 22.2685262.

(b) s=16
We use Lemma 4.1 with j =4 and u = 14. As in the case s = 15, we find that
P14 = 0, and that condition (A) (which follows from (4.3)) is satisfied easily. Then
provided only that (o) holds, that is

A15(1_¢1_--~_¢4) = %(1+¢1),

we may deduce that the ¢, are give by (4.7), (4.8) and (4.9). A calculation reveals that
the latter equations give ¢, < 0.11942505, ¢, < 0.11780429, ¢, < 0.11445019, and
¢4 < 0.10750899. Thus the desired condition is indeed met, and by (4.10) we have
Afs < 24.1918579.
(c) s =17

We use the Corollary to Lemma 4.1 with j = 3 and u = 15. We find once again that
P15 =0, and that (4.3) is satisfied easily. Condition (4.2) is also satisfied, since by
using the conclusion of part (b), we have

Ay =0.1918579 > 0.1125 = w(k+1)/(k—j).

Hence we may deduce that the ¢, are given by (4.7), (4.8) and (4.9). A calculation
reveals that ¢; < 0.12068453, and hence by (4.10), A¥, < 26.1341799.

(d) s =18

We use the Corollary to Lemma 4.1 with j = 3 and 4 = 16. Once more, we find that
P16 = 0, and we have

A, =0.1341799 > 0.1125 = w(k+1)/(k—j).

Thus conditions (4.2) and (4.3) are satisfied easily. The ¢, are therefore given by (4.7),
(4.8) and (4.9). Then ¢, < 0.12131915, and hence by (4.10), A¥, < 28.088454 5.
(e) s=19

We use the Corollary to Lemma 4.1 with j =2 and » = 17. Again we find that
P17 = 0. Also
A = 0.0884545 > 0.046875 > w(k+1)/(k—j).
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Hence conditions (4.2) and (4.3) are met, and we may deduce that ¢, are given
by (4.7), (4.8) and (4.9). Then we have ¢, < 0.12214150, and hence by (4.10),
Af, < 30.0547826.
We now complete the proof of the theorem. Let X = P85 and Z = PX~'. Define the
generating function A(x) by
ha) = X e(ax®),

ze%
where € ={x:2=pz,X/2 <p<X,pprime, ze ot (Z,7")}.
Let s be an even integer, and write s = 2r. Define m to be the set of real numbers o
in (P77, 1+4P~"] with the property that whenever a€Z geN, (a,q) =1 and
le—a/ql < ¢7'X77(rZ®)7, then one has ¢ > X. Then the argument of Vaughan (1989,
§9) gives

sup |A(a)] < P, (5.1)
aem
where o= (8—TA,)/30s. (5.2)

By (5.2) with s = 16, we obtain o > 0.01386873. Moreover A¥ +4(1 —0) < 34. Then
by Vaughan & Wooley (1991, Theorem 4), we may finally conclude that G(8) < 42.
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